

Period_____ Accelerated Chemistry

CHAPTER 6 Chemical Bonding

SECTION 1 Introduction to Chemical Bonding

OBJECTIVES

- 1. Define Chemical bond.
- 2. Explain why most atoms form chemical bonds.
- 3. Describe ionic and covalent bonding..
- 4. Explain why most chemical bonding is neither purely ionic or purley
- 5. Classify bonding type according to electronegativity differences.

SECTION 2 Covalent Bonding and Molecular Compounds

OBJECTIVES

- 1. Define molecule and molecular formula.
- 2. Explain the relationships among potential energy, distance between approaching atoms, bonds length and bond energy.
- 3. State the octet rule.
- 4. List the six basic steps used in writing Lewis dot Structures.
- 5. Explain how to determine Lewis structures for molecules containing single bonds, multiple bonds or both.
- 6. Explain why scientists use resonance structures to represent some molecules.

SECTION 3 Ionic Bonding and Ionic compounds

OBJECTIVES

- **1.** Compare and contrast the chemical formula for a molecular compound wit one for an ionic compound.
- 2. Discuss the arrangements of ions in crystals.
- 3. Define lattice energy and explain its significance.
- 4. List and compare the distinctive properties of ionic and molecular compounds.
- 5. Write the Lewis structure for a polyatomic ion given the identity of the atoms combined and other appropriate information.

Date

Period

Accelerated Chemistry

SECTION 4 Metallic Bonding

OBJECTIVES

- 1. Describe the electron-sea model of metallic bonding, and explain why metals are good electrical conductors.
- 2. Explain why metal surfaces are shinny.
- **3.** Explain why metals are malleable and ductile but ionic crystalline compounds are not.

SECTION 5 Molecular Geometry

OBJECTIVES

- **1. Explain VSEPR theory.**
- 2. Predict the shapes of molecules or polyatomic ionis using VSEPR theory.
- **3.** Explain how the shapes of molecules are accounted for by hybridization theory.
- 4. Describe dipole dipole forces, hydrogen bonding, induced dipoles and London Dispersion Forces and their effects on properties such as boiling point and melting point.
- 5. Explain what determines molecular polarity.

Date_____ Period

Accelerated Chemistry

109°28' H Chapter 6 Vocabulary Chemical

Chemical Bonding

Sec 6-1 Introduction to Chemical Bonding

Chemical bond	Nonpolar covalent bond
Ionic bonding	Polar
Covalent bonding	Polar covalent bond

Sec 6-2 Covalent Bonding and Molecular Compounds

Molecule	Electron dot notation
Molecular compound	Lewis structure
Chemical formula	Single bond
Molecular formula	Multiple bond
Bond energy	resonance

Sec 6-3 Ionic Bonding and Ionic Compounds

Ionic compound	Lattice energy
Formula unit	Polyatomic ion

Sec 6-4 Metallic Bonding

Metallic bonding Malleability ductility

Sec 6-5 Molecular Geometry

VSEPR theory	Intermolecular force
Hybridization	dipole
hybrid orbitals	hydrogen bonding
Intramolecular force	London dispersion forces

Date_____ Period_

Accelerated Chemistry

Date_ Period_____

Accelerated Chemistry

CHAPTER 6 STUDY GUIDE

Chemical Bonding

SECTI	ON 1	INT	[R	ODU	CT	ION TO O	CHEM	IIC	CAL	BO	NDIN	G	
SHORT	ANS	NER	An	swer	the	following	questi	ons	s in t	the s	pace	prov	vided.
								-					-

- 1. A chemical bond between atoms results from the attraction between the valence electrons and _____of different atoms.
 - (a) nuclei
 - (b) inner electrons
- (c) isotopes
- (d) Lewis structures
- 2. A covalent bond consists of

 (a) a shared electron.
 (b) a shared electron pair.

 (c) two different ions.
 (d) an octet of electrons.

- 3. If two covalently bonded atoms are identical, the bond is identified as
 - (a) nonpolar covalent.
- (c) ionic.
- (d) dipolar.
- 4. A covalent bond in which there is an unequal attraction for the shared electrons is
 - (a) nonpolar. (c) ionic.
 - (b) polar. (d) dipolar.
- 5. Atoms with a strong attraction for electrons they share with another atom exhibit

 - (a) zero electronegativity.(b) low electronegativity.(c) high electronegativity.(d) Lewis electronegativity.
- (d) Lewis electronegativity.
- Bonds that possess between 5% and 50% ionic character are considered to 6. ____ be
 - (a) ionic.

- (c) polar covalent.
- (d) nonpolar covalent. (b) pure covalent.
- 7. _____ The greater the electronegativity difference between two atoms bonded together, the greater the bond's percentage of

 - (a) 10nic character.(b) nonpolar character.(c) metallic character.(d) electron sharing
- 8. The electrons involved in the formation of a chemical bond are called
- 9. A chemical bond that results from the electrostatic attraction between positive and ionic bond negative ions is called a(n)

15	+
109°28'	sp ³ 1s
TH C	H H
sp3	H
25	

Date_____ Period

Accelerated Chemistry

CHAPTER 6 STUDY GUIDE

Chemical Bonding

SECTION 2 COVALENT BONDING AND MOLECULAR COMPOUNDS SHORT ANSWER Answer the following questions in the space provided.

1. Use the concept of potential energy to describe how a covalent bond forms between two atoms.

2. Name two elements that form compounds that can be exceptions to the octet rule.

3. Explain why resonance structures are used instead of Lewis structures to correctly model certain molecules.

4. Bond energy is related to bond length. Use the data in the tables below to arrange the bonds listed in order of increasing bond length, from shortest bond to longest.

Bond	Bond energy (kJ/mol)
H—F	569
H—I	299
H—Cl	432
H—Br	366

a.

b.

Name

Date Period

Accelerated Chemistry

Bond	Bond energy (kJ/mol)
С—С	346
C≡C	835
C=C	612

5. Draw Lewis structures to represent each of the following formulas: a. NH₃

 $b. H_2O$

c. CH₄

 $d. \ C_2H_2$

e. CH₂O

Date_____ Period

Accelerated Chemistry

CHAPTER 6 STUDY GUIDE

Chemical Bonding

SECTION 3 IONIC BONDING AND IONIC COMPOUNDS SHORT ANSWER Answer the following questions in the space provided.

- 1. _____ The notation for sodium chloride, NaCl, stands for one
 - (a) formula unit. (c) crystal.
 - (b) molecule. (d) atom.
- 2. _____ In a crystal of an ionic compound, each cation is surrounded by a number of
 - (a) molecules. (c) dipoles.
 - (b) positive ions. (d) negative ions.
- 3. _____ Compared with the neutral atoms involved in the formation of an ionic compound, the crystal lattice that results is
 - (a) higher in potential energy.
- (c) equal in potential energy.
- (b) lower in potential energy. (d) unstable.
- 4. _____ The lattice energy of compound A is greater in magnitude than that of compound B. What can be concluded from this fact?
 - (a) Compound A is not an ionic compound.
 - (b) It will be more difficult to break the bonds in compound A than those in compound B.
 - (c) Compound B has larger crystals than compound A.
 - (d) Compound A has larger crystals than compound B.
- 5. _____ The forces of attraction between molecules in a molecular compound are generally
 - (a) stronger than the attractive forces among formula units in ionic bonding.
 - (b) weaker than the attractive forces among formula units in ionic bonding.
 - (c) approximately equal to the attractive forces among formula units in ionic bonding.
 - (d) equal to zero.
- 6. Describe the force that holds two ions together in an ionic bond.

7. What type of energy best represents the strength of an ionic bond?

Date Period

Accelerated Chemistry

SECTION 3 continued

8. What types of bonds are present in an ionic compound that contains a polyatomic ion?

9. Arrange the ionic bonds in the table below in order of increasing strength from weakest to strongest.

Ionic bond	Lattice energy (kJ/mol)
NaCl	-787
CaO	-3384
KCl	-715
MgO	-3760
LiCl	-861

10. Draw Lewis structures for the following polyatomic ions:

a. NH_4^+

b. SO ²⁻₄

11. Draw the two resonance structures for the nitrite anion, NO_2^- .

Date Period

Accelerated Chemistry

CHAPTER 6 STUDY GUIDE

Themical Bonding

SECTION 4 METALLIC BONDING

SHORT ANSWER Answer the following questions in the space provided.

- 1. In metals, the valence electrons are considered to be
 - (a) attached to particular positive ions. (c) immobile.
 - (b) shared by all surrounding atoms.(d) involved in covalent bonds.
- 2. The fact that metals are malleable and ionic crystals are brittle is best explained in terms of their (c) enthalpies of vaporization.
 - (a) chemical bonds.
 - (b) London forces. (d) polarity.
- 3. _____ As light strikes the surface of a metal, the electrons in the electron sea (a) allow the light to pass through.
 - (b) become attached to particular positive ions.
 - (c) fall to lower energy levels.
 - (d) absorb and re-emit the light.
- Mobile electrons in the metallic bond are responsible for
 - (a) luster.

- (c) electrical conductivity.
- (b) thermal conductivity.
- (d) All of the above.
- In general, the strength of the metallic bond moving from left to 5. right on any row of the periodic table.
 - (a) increases (b) decreases
- (c) remains the same
- (d) varies
- 6. When a metal is drawn into a wire, the metallic bonds
 - (a) break easily. (b) break with difficulty.
 - (c) do not break. (d) become ionic bonds.
- 7. Use the concept of electron configurations to explain why the number of valence electrons in metals tends to be less than the number in most nonmetals.

109°28* 1s +H sp ³ +H +Is
SECTION 4 contin

Date Period

Accelerated Chemistry

nued

- 8. How does the behavior of electrons in metals contribute to the metal's ability to conduct electricity and heat?
- 9. What is the relationship between the enthalpy of vaporization of a metal and the strength of the bonds that hold the metal together?
 - 10. Draw two diagrams of a metallic bond. In the first diagram, draw a weak metallic bond; in the second, show a metallic bond that would be stronger. Be sure to include nuclear charge and number of electrons in your illustrations. a. b.

Note: In the strong bond, the charge on the nucleus and the number of electrons must be greater than in the weak bond.

11. Complete the following table:

	Metals	Ionic Compounds
Components		
Overall charge		
Conductive in the solid state		
Melting point		
Hardness		
Malleable		
Ductile		

109°28'	Name Date
Is H Sp ³ H	Period Accelerated Chemistry
CHAPTER 6 STUDY GUIDE	10
SECTION 5 MOLECULAR GE SHORT ANSWER Answer the fol	*S OMETRY lowing questions in the space provided.
 Identify the major assumption shape of atoms. 	of the VSEPR theory, which is used to predict the
2. In water, two hydrogen atoms linear molecule?	are bonded to one oxygen atom. Why isn't water a
3. What orbitals combine togethe	er to form sp^3 hybrid orbitals around a carbon atom?
4. What two factors determine w	hether or not a molecule is polar?
5. Arrange the following types o being the weakest and 4 the st	f attractions in order of increasing strength, with 1 rongest.
hydrogen bonding	
ionic	
dipole-dipole	
London dispersion6. How are dipole-dipole attractionbonding similar?	ons, London dispersion forces, and hydrogen
And	erson - MCHS

1s $1s$ $1s$ $1s$ $1s$ $1s$ $1s$ $1s$		Name Date		
		SECTION 5 co	ontinued	
7. Complete th	e tollowing table:	C	D 1	
Formula	Lewis structure	Geometry	Polar	_
H_2S				
				_
CCI_4				
BF_3				
HaO				_
1120				
PCl				_
1 015				
BeF ₂				
SF ₆				
0				
				_

Date_____ Period

Accelerated Chemistry

CHAPTER 6 STUDY GUIDE

Chemical Bonding

MIXED REVIEW

SHORT ANSWER Answer the following questions in the space provided.

1. Name the type of energy that is a measure of strength for each of the following types of bonds:

a. ionic bond

b. covalent bond

c. metallic bond

2. Use the electronegativity values shown in **Figure 20**, on page 161 of the text, to determine whether each of the following bonds is nonpolar covalent, polar covalent, or ionic.

a. F	 d. H—H
b.	 е. Н—С
Na—Cl	 f. H—N
с. Н—О	

3. How is a hydrogen bond different from an ionic or covalent bond?

4. H₂S and H₂O have similar structures and their central atoms belong to the same group. Yet H₂S is a gas at room temperature and H₂O is a liquid. Use bonding principles to explain why this is.

Date_____ Period

Accelerated Chemistry

MIXED REVIEW continued

5. In what way is a polar-covalent bond similar to an ionic bond?

6. Draw a Lewis structure for each of the following formulas. Determine whether the molecule is polar or nonpolar.

a. H₂S

b. COCl₂

_____ c. PCl₃

_____ d. CH₂O